Skip to content

Tunable lasers can save money while making networks more versatile

The distinctive feature of the tunable fiber laser is a wavelength of operation, which can be altered in a controlled manner. Only several types of fiber lasers allow continuous tuning over a significant range. Tunable fiber lasers are usually operating in a continuous way with a small emission bandwidth, although some Q-switched and mode-locked fiber lasers can also be wavelength tuned. There are many types and categories of tunable fiber lasers such as excimer fiber lasers, gas-fiber lasers (CO2 lasers, He-Ne lasers, and suchlike), dye fiber lasers (liquid and solid state), semiconductor crystal and diode lasers, and free electron lasers. Tunable fiber lasers find applications in spectroscopy, photochemistry, atomic vapor laser isotope separation, and optical communications.
Tunable lasers can save money while making networks more versatilePrices for fixed and tunable fiber lasers are not yet equivalent, however. Although some tunable types are priced like fixed-wavelength devices, they are tunable over only very narrow ranges, about 3-4 nm. Those fiber lasers that can be tuned across wide wavelength ranges remain at least two or three times as expensive as their fixed counterparts. Such high price on tunable fiber lasers is explained by specific features: the increased complexity of manufacturing them, the extra testing required, and the newness of the technology, which has yet to reach true volume demand. As demand for tunable lasers rises, their prices will come down. Laser manufacturers claim the price premium for a widely tunable laser will drop to about 15-20 percent above that of a fixed laser anyway.
The significantly favorable changes in demand for tunable fiber lasers will occur in parallel with their application to make optical networks more flexible. Nowadays fiber optic networks based on different types of fiber optic devices are essentially fixed: the optical fibers are connected into pipes with huge capacity but little reconfigurability. It is almost impossible to change how that capacity is deployed in real time. In addition to this, there is a problem in choosing a wavelength for a channel: as traffic is routed through a network, certain wavelengths may be already in use across certain links. Tunable fiber lasers will ease a switch to alternative channels without swapping hardware or re-configuring network resources. The benefits gained from a use of tunable fiber lasers are in the time it takes to actually deliver different types of services. Undoubtedly, tunable fiber lasers can dramatically improve fiber optic networks efficiency and will play an important role in enabling future dynamically reconfigurable optical networks, along with optical switches and semiconductor optical amplifiers.
Optromix Inc., headquartered in Cambridge, MA, USA, is a manufacturer of laser technologies, optical fiber sensors, and optical monitoring systems.
We develop and manufacture a broad variety of fiber lasers, СО 2 lasers, Ti: sapphire lasers, dye lasers, and excimer lasers. We offer simple erbium laser and ytterbium laser products, as well as sophisticated laser systems with unique characteristics, based on the client’s inquiry.
We manufacture lasers using our own technologies based on the advanced research work and patents of international R&D team. Laser processes are high quality, high precision, easily-automated manufacturing solutions that provide repeatability and flexibility.
If you are interested in fiber laser systems, please contact us at