LIDAR (light detection and ranging) is a laser technology used for optical remote sensing which allows one to analyze scattered light properties in order to obtain certain information about a distant object.
These advanced laser systems are often used, for example, to collect precise information about Earth surface and its characteristics. The sensor sends out a pulse of light to travel to an object, it reflects off the object and travels back. When the light clashes into an object, the sensor detects the reflected pulse. Then it measures the time necessary for the reflected pulse to return. The light pulse travels with the speed of light which is known and constant; hence, the time is easily converted into distance or as it is called – the range. The information on the position and angle of the laser equipment allows calculating exact coordinates of the object reflected.
LIDAR technology can be applied in a lot of different areas, from geographical mapping to robotics due to its high configuration capabilities and wavelengths.
There are different types of LIDARs: rangefinder, DIAL and Doppler.
Rangefinders measure a distance between a sensor and a solid object.
DIAL (differential absorption) measures chemical concentrations in the atmosphere (ozone, water vapor, pollution). It emits pulses with two different wavelengths which are set in a specific way, so that a molecule can absorb one of them, but the other can’t. This way the molecule concentration is deduced.
Doppler technique measures an object velocity. When a light pulse travels to a moving object, its wavelength changes a little, and it is called Doppler shift. When the object is moving away from the sensor, the reflected wavelength will be longer, and when the object is moving towards the sensor, the reflected wavelength will be shorter.
Recommended Articles