Utilizing Nd:YAG Q-switched Lasers in Solid-State Laser Technology

NdYAG Q-switched Lasers

Introduction to Q-Switching

Q-switching technique is usually utilized in solid-state laser technology to generate nanosecond high energy pulses. It creates short pulses through regulating cavity losses. Q factor (quality factor) is a definition of an oscillation damping strength measurement.

Types of Q-Switching

There are two types of q-switching: passive and active.

Active Q-Switching

Active q-switching technique uses an electrically controlled modulator (acousto-optic or electro-optic). It is applied to control optical losses which are high initially, but in the process of switching they are lowered abruptly. Pump phase and the gain-medium upper-state lifetime should be roughly the same to avoid losing energy in spontaneous emissions. Energy loss through spontaneous emissions becomes significant when laser gain is high. However, it is not the biggest concern when it comes to bulk lasers. A bigger issue is parasitic lasing because of unwanted reflections or q-switch. To avert the lasing a modulator should have a high pump phase when performing power losses.
It is possible to design smaller mode area lasers when the energy per pulse and energy stored are lowered due to high pulse repetition rates (10 kHz, 100 kHz or more). However, high repetition rates create another issue – collecting enough laser gain even when stored energy is low, because when the gain is low pulses become longer. Even in case of high average powers it can still be problematic, because it may need bigger beam areas. That is why it is better to select a crystal providing a higher laser gain, for example, Nd:YVO4.

Passive Q-Switching

Passive q-switching technique uses a saturable absorber instead of an electrical modulator. There is a high optical loss when it is in the unsaturated state. To start the lasing a laser gain has to reduce that loss. When the emission increases, it saturates losses, and the laser power grows fast, which leads to the gain saturation.
It may give an impression that it is poor because of the absorption; however this is not the case. Just a little portion of energy is required for an absorber transparency, when the laser gain medium saturation energy is higher than the absorber energy. One of the most common crystals used in this case is Nd:YAG.
The pumping in a passive q-switched laser continues up to a moment when a pulse build up begins. This process begins when there is enough energy stored in the gain medium. The main difference between passive and active q-switching technique is that in case of a passive one the pumping power change does not affect the energy pulse, it will only effect the timing. In active q-switching technique both will be affected, the energy pulse and timing.

Thulium Fiber Laser for LIDAR and Gas Sensing Systems

Thulium Fiber Laser

Introduction to Thulium Fiber Lasers

Ultra-short pulsed femto- and picosecond lasers are in high demand today. Thulium-doped lasers, definitely, stand out because of their capability to generate emissions in a wide range. Thulium Fiber Laser has unique qualities which make it perfect for a lot of different applications, namely, medicine, spectroscopy, laser ranging and micromachining of transparent materials, in particular, semiconductors and laser for LIDAR. Presently, they are the most effective sources of a single-mode emission with the wavelength in 2 µ range.

Medical and Biological Applications

Thulium Fiber Laser water absorption properties are outstanding. The main constituent of any biological tissues is water, which is why strong water absorption quality of thulium laser allows significant heating of small areas. In other words, cutting biological tissues becomes extra precise. All of the above make Thulium Fiber Laser irreplaceable when it comes to performing surgical procedures.

Advantages for Free-Space and Sensing Applications

Thulium lasers compared to traditional optimal cost-efficient laser systems that operate at shorter wavelengths have undeniable advantages when using for free space applications. It gives them a high commercial value, especially as laser for LIDAR and gas sensing systems, optical communication applications and pumping lasers for the mid infra-red spectrum.

Host Materials and Laser Types

Thulium doped lasers are released either in fiber or crystal host materials. Depending on the host material the wavelength range spreads from 1840 nm to 2100 nm. Thulium fiber can either be a q-switched laser or continuous wave laser, and both develop significantly a high average power. On the other hand, thulium doped crystals have a broad emission spectrum, which allows a large wavelength tuning range. Thulium doped crystals are of really good quality with a few imperfections and defects. YAG and YFL crystals reveal the best quality nowadays; however, they are not the best choices because of their thermal conductivity and emission cross section. There is definitely a room for improvement, and further research has to be done to enhance their performance.
Despite the fact that there are so many different applications in a lot of industries only few laser technology providers can deliver this type of laser at the moment. Currently, Optromix is developing its own thulium laser and will release it shortly for commercial use (e.g. laser for LIDAR).